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We consider a natural probabilistic variation of the classical vehicle routing problem (VRP), in which demands are
stochastic. Given only a probabilistic description of the demand we need to design routes for the VRP. Motivated by
applications 1n strategic planning and distribution systems, rather than resolving the problem when the demand becomes
known, we propose to construct an a priort sequence among all customers of minimal expected total length. We analyze
the problem using a variety of theoretical approaches. We find closed-form expressions and algorithms to compute the
expected length of an a priori sequence under general probabilistic assumptions. Based on these expressions we find
upper and lower bounds for the probabilistic VRP and the VRP re-optimization strategy, in which we find the optimal
route at every instance. We propose heuristics and analyze their worst case performance as well as their average behavior
using techniques from probabilistic analysis. Our results suggest that our approach is a strong and useful alternative to

the strategy of re-optimization in capacitated routing problems.

The deterministic vehicle routing problem (VRP)
is a well studied problem in the operations
research literature. In this paper, we study an impor-
tant variation of the VRP, in which demands are
probabilistic in nature rather than deterministic. In
particular, a single vehicle of limited capacity must
meet demands at # fixed locations, returning periodi-
cally to the depot to empty its current load. The
objective is to minimize the total distance traveled. In
this paper, we consider the situation in which demand
at each location is unknown at the time when the tour
is designed, but is assumed to follow a known proba-
bility distribution. This situation arises in practice
whenever a company (e.g., UPS), on any given day, is
faced with the problem of deliveries (collections) to
(from) a set of customers, which have random
demand.

An obvious approach to this problem is to redesign
the routes when the demand becomes known. There
are, however, several difficulties with this approach;
the system’s operator might not have the resources for
doing so; or, it may be that such redesign of tours is
not sufficiently important to justify the required effort
and cost. Even more importantly, the operator may
have other priorities, such as regularity and personal-
ization of service, by having the same vehicle and
driver visit a particular customer every day. Moreover,
it might be very difficult to learn the demand on a
particular day before actually visiting the customer.

Instead of redesigning the routes every day we pro-

pose a different strategy to update the routes: Deter-
mine a fixed a priori sequence among all potential
customers. Depending on when information about a
customer’s demand becomes available we can define
two different strategies for updating the routes.

Strategy a

Under Strategy a the vehicle visits all the customers
in the same fixed order as under the a priori sequence,
but serves only customers requiring service that day.
The total expected distance traveled corresponds to
the fixed length of the a priori sequence plus the
expected value of the additional distance that must be
covered whenever the demand on the sequence
exceeds vehicle capacity.

Strategy b

Strategy b is defined similarly to Strategy a with the
sole difference that customers with no demand on a
particular instance of the vehicle route are simply
skipped. To illustrate the difference between the two
strategies consider the example in Figure 1. If the a
priori sequence is (0, 1, 2, 3, 4, 5, 6, 0), the depot is
node 0, the vehicle has capacity 3, and the demand of
the customers is D, = 0, D, =2, Dy =1, Dy = 0,
Ds = 2, Dy = 0, then under Strategy a the resulting
routes are shown in Figure 1 (left) and under Strategy
b the resulting routes are shown in Figure 1 (right).
Note that at node 3 the capacity is reached and the
vehicle is forced to return to the depot.
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Figure 1. The two updating strategies a and b.

There is an important difference in the philosophy
of the two updating strategies. Strategy a models situ-
ations in which the demand (if any) of any particular
customer becomes known only when the customer is
visited. The vehicle is then forced to return to the
depot when its capacity is reached. Under Strategy b,
however, the actual demand is known before the tour
starts (customers call or the operator calls them or in
the case of package deliveries the addresses are
known), so that savings can occur by skipping cus-
tomer locations with zero demand. Of course, in
Strategy b we assume that the demand is known before
the vehicle starts its route, so it is clearly better to use
a re-optimization strategy. As mentioned, however,
there might be practical considerations that make the
re-optimization strategy less attractive (computing
resources are not available, it is time consuming even
if resources are available, regularity of service, etc.).

The natural question that arises is how to choose
the a priori sequence. We propose to choose an
a priori sequence of minimal expected total length,
which corresponds to the expected total length of the
fixed set of routes plus the expected value of the extra

distance that might be required by a particular reali-
zation of the demand. The extra distances will be due
to the fact that demand on the route may occasionally
exceed the capacity of the vehicle and force it to go
back to the depot before continuing on its route. We
call the problem of selecting the a priori sequence of
minimum expected length, when we use updating
Strategy a (b), the probabilistic vehicle routing prob-
lem (PVRP) under Strategy a (b). We now review
some situations in which vehicle routing problems
with stochastic demand arise.

Application Areas

In a strategic planning scenario, consider a delivery
and collection company which has decided to begin
service in a particular areca. The company has carried
out a market survey and identified a number n of
potential major customers who during any collection/
distribution period have a significant probability of
requiring a visit. The company wishes to estimate the
resources necessary to serve these customers. At this
stage of planning, the company assigns the same
probability distribution of demand to all potential
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customers. To address the planning problem the com-
pany will wish to estimate approximately the expected
amount of travel that will be necessary on a typical
day to serve the subset of # customers that will require
a visit.

In a routing context, consider, for example, a prob-
lem in which a central bank has to collect money on
a daily basis from several but not all of its branches.
The capacity Q of the vehicle used may not correspond
to any physical constraint but to an upper bound on
the amount of money that a vehicle might carry for
safety reasons. The distribution of demand at each
particular branch may be different depending on the
amount of money it handles. In the same way, there
is a similar problem when the bank wishes to deliver
money to automatic teller machines that are located
in several locations in each area.

Similarly, the distribution of packages from a post
office can be modeled as a PYRP, where the proba-
bility that a certain building requires a visit is given
and the capacity Q corresponds to the physical con-
straint that a truck can carry only a fixed weight or
volume. Other examples reported in the literature
include a “hot meals” delivery system (Bartholdi et al.
1983) and routing of forklifts in a cargo terminal or
in a warehouse.

Brief Literature Review

The scientific literature concerning the VRP has been
expanding at a very rapid pace, see, for example, the
three excellent review volumes on the traveling sales-
man problem (Lawler et al. 1985), on routing and
scheduling (Bodin et al. 1983) and on vehicle routing
(Golden and Assad 1988), each of which offers several
hundreds of references. Except for an isolated result
in the 1970s (Tillman 1969), VRPs with stochastic
elements in their definitions have received attention
only recently. Stewart and Golden (1983), Dror and
Trudeau (1986), Laporte and Louveau (1987), and
Laporte, Louveau and Mercure (1987) use techniques
from stochastic programming to solve optimally small
problems and find bounds for the problems. Com-
pared with this approach, our approach is entirely
different. We propose to find an a priori solution for
the problem, which is easily updated when the demand
is realized. Moreover, we derive worst case and average
case bounds for the performance of the strategy we
propose. We also compare the strategy of finding the
a priori solution with the re-optimization strategy,
which is the best one can possibly do.

The idea of using an a priori sequence for the
solution of traveling salesman problems when

instances are modified probabilistically was first intro-
duced in the Ph.D. thesis of Jaillet (1985) (see also
Jaillet 1988). This idea was generalized to other com-
binatorial optimization problems in the Ph.D. thesis
of Bertsimas (1988), in which the probabilistic mini-
mum spanning tree, the probabilistic traveling sales-
man problem, the probabilistic vehicle routing
problem, and facility location problems were ana-
lyzed. In all these investigations the demand distribu-
tion is assumed to be binary, i.e., customer / has a
unit demand with probability p, or does not have any
demand with probability 1 — p,. In this paper, we
consider arbitrary discrete-demand distributions.

The paper is organized as follows. In Section 1, we
introduce the problem formally and establish the nota-
tion. In Section 2, we address the question of finding
closed-form expressions and algorithms to compute
the expected length of an a priori sequence under
general probabilistic assumptions. In Section 3, we
prove upper and lower bounds for the PVRP and the
VRP re-optimization strategy, in which we find the
optimal route after the demand is realized. We further
use these bounds to propose heuristics with provable
worst case performance. In Section 4, we examine the
asymptotic behavior of the PVRP using techniques
from probabilistic analysis for the case that customer
locations are randomly distributed in the Euclidean
plane. In the final section, we summarize the contri-
butions of the paper and discuss the limitations and
applicability of our model as well as future rescarch.

1. FORMAL DEFINITION AND NOTATION

In this section, we formally define the PVYRP and
establish the notation we will use. Given a complete
network, let the nodes be {0, 1, ..., n}, where node 0
denotes the depot and the set V = {1, 2, ..., n}
denotes the set of customer locations. The distances
d(i, j) are assumed to be symmetric (although our
results can easily be modified to hold even in the
nonsymmetric case) and they satisfy the triangle
inequality: d(7, j) < d(i, k) + d(k, j).

Let the capacity of the vehicle be Q (Q is an integer)
and let D,, i =1, ..., n be the random variable that
describes the demand of customer i. We assume that
the probability distribution of D, is discrete and
known. Let p(k) = Pr{D, =k}, i=1, ..., n and

=0, 1, ..., K. We further assume that K < (,
that is, no single location has demand exceeding the
capacity Q. We further assume that the demands are
independent.

There are (K + 1) possible realizations of the




demand and therefore (K + 1)” possible instances of
the problem. If we solve the underlying VRP optimally
at every problem instance, i.e., we find the route
that minimizes the total distance traveled, Ilet
Rygp(Dy, Dy, ..., D,) be the optimal route length if
the demand is D,, D, ..., D,. Note that since the
demand is stochastic this is a random variable. We
call the expectation of this random variable the
expected length under the re-optimization strategy,
because we redesign (re-optimize) the routes at every
problem instance. This expected length is thus given
by

E[R, zp]
= 3 () - Pt )R gty oo ey i) (1

where the summation is over all demand instances for
the nodes. Clearly, the exact estimation of E{R; x»] is
a very difficult problem because it involves (K + 1)”
terms. Moreover, in order to evaluate each term
(Ryzp(ly, - ... 1)) we need to solve exactly a VRP. So,
in a strategic planning scenario, in which a company
needs to have an estimate of the expected travel cost,
the expected length of the re-optimization strategy is
not a realistic alternative computationally.

Related to the vehicle routing re-optimization
strategy, we can define a traveling salesman re-
optimization strategy in which, at every instance of
the problem, the vehicle visits all the customers with
nonzero demand according to the optimal traveling
salesman tour. We denote

E[R/Agp] = 2 II PI'{D, > 0}

SC1 €S8

I1 PriD, = O}L;s(S5), (2)

€S

where L;4s(.S) is the length of the optimal TSP tour
among customers in the set .S.

Let us now consider the two a priori strategies we
are proposing. Given an a priori sequence = let
L.(ii, ..., i,)be the length of the a priori sequence +
that will result under strategy / = a, b if the demand
patternis ¢, . .., i,. We denote with

E[L71= 2 pG) .o puli)LiGry ooy b)) (3)

the expected length of the a priori sequence 7 under
Strategy a and

E(L]]= Y p)...p.G)L Gy, ..., 0y, (4)
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the expected length of the a priori sequence 7 under
Strategy b.

Our goal 1s to find the a priori sequences 7, and 7,
that minimize the expected lengths in (3) and (4),
respectively. Although there are (K + 1)” terms in both
(3) and (4) we will be able to compute the expected
length of an a priori sequence efficiently in the next
section.

2. THE EXPECTED LENGTH OF AN A PRIORI
SEQUENCE

In this section, we propose an algorithm for finding
the expected length of an a priori sequence under
Strategies a and b. We first consider the case of binary
demand, where a customer either has a demand of
one unit or it does not have any demand.

2.1. Binary Demand

We first examine the important special case in which
all the demand is binary, either 0 or 1. There are
several motivations for examining this case separately.
From an applications viewpoint, it is important in
situations in which the randomness in the demand
can be modeled by the presence (or not) of a customer.
For example, in the distribution of packages by the
post office, there is a potential set of customers each
requiring a visit with probability p,.

From a theoretical viewpoint, the usual traveling
salesman problem can be viewed as a special case of
the PVRP under Strategy a, if the capacity 0 = #, i.e.,
the problem is uncapacitated. Moreover, the proba-
bilistic traveling salesman problem (PTSP) introduced
and analyzed in Jaillet (1988) and further explored in
Bertsimas (1988) can be viewed as a special case of
the PVRP under Strategy b, for which the capacity Q
is equal to #, i.e., the capacity of the vehicle is not a
binding constraint. Moreover, the insights gained
from the binary case carry over to the general case.

Our initial goal then is to compute E[L?], E[L?]
efficiently for a given a priori sequence 7. Let p, be the
probability that customer / has a demand of one unit
and | — p, of not having any demand independently
of any other customer. Then we can compute the
expected length of an a priori sequence as follows.

Theorem 1. If the a priori sequence is + = (0. 1. ...,
nn+120),then

E[L1=YdG, i+ 1)+ 2 vis(i, i + 1), (5)
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" -1
E[L7]= ¥ d(O, i)p, H] (1-p)
=1 r=

+ 3 a6, op T (1 -p)

=1 r=i+1

gl d(l ])plpj H (1 _pr)

J=1+1 r=i+1

+ Z 2 (6, j)v.p, H (I = p), (6)

1=1 r=i1+1
where
s(i, j) & d(i, 0) + d(0, j) — d(i, j),
v=0, i=0,....,0-1,
L/Q1
k=1

and f(m, r) &

customers 1,

Priexactly r customers among the
..., m have nonzero demand} are

computed from the recursion: For m = 1, ..., n,
r=1,...,m
f(ms r)=p,,,f(m— lsr“ 1)

+ (1 - pm)f(m -1, r)’ (8)

with the initial conditions

m

fm, m) = Hp fom, 0= 11 (1 = p).

Proof. Consider first Strategy a. The expected length
of the sequence is a summation of the length of the a
priori sequence plus the expected value of the extra
distance when the vehicle reaches its capacity. To
evaluate this second term, let i be a node on the
sequence, where the vehicle reaches its capacity. The
vehicle will then go to the depot before going back to
the following node in the route, which is i + 1 under
Strategy a, even if node / + 1 has no demand. The
extra distance traveled is then s(i, i + 1) = d(i, 0) +
dO,i+ 1)—d, i+ 1)

In (5), v, is the probability that the vehicle reaches
its capacity Q at node /. Clearly,y,=0fori=0, ...,
Q — 1. Consider now node i. For the vehicle to reach
its capacity at node 1 (1 = Q), node { must have a unit
demand and from the previous i — 1 nodes exactly
kQ ~ 1 must be present for some & = 1, ..., Li/Q],
so that the capacity is reached with the addition of
node i. From this observation (7) follows. The proba-
bilities /' (m, r) are computed recursively from (8) by
conditioning on the event that node m has a demand.

Under Strategy b, the first three terms in (6) are
simply the expected length of the tour 7 in the prob-
abilistic traveling salesman sense. In particular, the
distance d(i, j) contributes to the expectation if nodes
i and ; are present and all the intermediate nodes have
zero demand. The fourth term is identical with
Strategy a, except that when the vehicle reaches its
capacity at node i, it goes back, after a visit to the
depot, to the first node j with a nonzero demand,
skipping nodes i+ 1,7+ 2,....j— 1 with no demand.

As an application of (5) and (6) we find the closed-
form expressions derived in Jaillet and Odoni (1988)
for the case in which all points have the same proba-
bility p of requiring a visit. Then expressions (8) imply
that f(m, r) = ()p'(1 — p)”~', and thus

E[LY1= Y dG i+ )+ X s(i,i+ 1)
1=0 =1
L/ Q) .
i—1
P (kQ

n o L/Ql .
EIRES i il

1=1 A=1

l>p"Q(l - p)*e,

E[L!] = )p*@(l — p)te

L

Y s, p(l — py=,

J=i+1

where E[L.] denotes the expected length of the a priori
tour 7 in the probabilistic traveling salesman sense
(the first three terms in (6)).

An important consequence of (5) and (6) is
that they provide an algorithm of O(#n?) to compute
E[L?], E[L?] for the general case of unequal proba-
bilities, because the computation of the probabilities

f(m, r) can be done recursively from (8) in O(n?),

and there are n — Q nonzero probabilities v,. The
computation of each of these probabilities from
(7) requires the evaluation of a sum of at most
fn/Q1 terms. Thus, we can compute all the v, in
Oln — Q)n/Q + n*) = O(n?). Finally, the expecta-
tion of the length of the sequence, given that we have
already computed the probabilities v, is done in
O(n) for Strategy a and O(rn?) for Strategy b, which
means that we can compute the expected length of
an a priori sequence in O(n”) for both strategies.
In the next subsection, we generalize these expressions
for the case of general discrete-demand distributions.

2.2. General Demand

In this section, we find expressions for the expected
length of a priori sequences under Strategies a and b.
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Let Pr[D, = k] = p,(k) be the probability that the
demand of customer i, D,, is equal to &, for k ranging
from 0 to K. As mentioned, we assume that K < Q,
i.e., the vehicle’s capacity is greater than the largest
demand of a customer on a given day. This assump-
tion removes the consideration of multiple returns to
the depot from the same node.

Similarly, as before, we define v, to be the probabil-
ity that the vehicle exactly reaches its capacity at node
7 and 4, to be the probability that the vehicle exceeds
its capacity at node i. Then the expected length of an
a priori sequence is computed as follows.

Theorem 2. [f'the a priort sequence is + = (0, 1, . ..,
n,n+1240)then,

E[L¢] = 2 dii, i + 1)

+ i (0,50, 1) + v, 80, 1 + 1), 9

=1

E[LY = ¥ O, ip. TT (1 = p)

+ ¥ dG, 0w T (- p)

r=i+1

+3 Y di s T (- p)

=1 j=1+1 r=t1+1

X

+ (5,s(i, D+ Y yps( j)
1

! J=i+1

=) a0

where
K
pr= kZ plk) = 1 = pA0),
=1
s(i, J) = d(i, 0) + d(O, j) — d(i, j),
¥ =0

q=1

i < n,

LK/ Q1 K
Y= {El p(K) (i — 1,90 — k)},
2 <

61207

LK/ Q! K—1 K
o= {2 < > n(r))f(z’— l,qQ—k)},

g=1 k=1 r=k+1

2<is<n,
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and f(m, r) = Prithe total demand of the customers
1, ..., misr}are computed from the recursion:

nuniK,r

f(m’ r) = kgo pm(k)f(m - 1’ F— k)’

m=2...nr=0...Km
with the initial conditions:

flm, r) =0 forr> Km.
S = {Pl(r) for0<r<K,

0 otherwise.

Proof. Under both Strategies a or b, the expressions
are almost the same as in Theorem 1 with the excep-
tion that two cases have to be distinguished—whether
the capacity is reached exactly at node / or not. In
particular, the explanation of the different terms
appearing in these expressions still holds as in
Theorem 1.

As in the case of binary demand, these expressions
lead 1o a O(K?*n?) algorithm to compute the expected
sequences under both Strategies a and b. Finally, a
closed-form expression for f(m, r) can be found when
all points have the same probability p,(k) & g, of
requiring a visit. Then with the interpretation that v,
is the number of customers with demand i we get

Sim, r) =

o r 7N
z <r p r,)‘]oﬂh N
fri+2rm+  +Krg=r 05 Iy e ee s TK

rotrnt  trx—mj

0 <r < mk,
mz=2,
0 otherwise,

where (}

ro.ry,

) denotes the multinomial coefTicient.

3. BOUNDS AND APPROXIMATIONS
FOR THE PVRP

In this section, we derive upper and lower bounds on
the various strategies we consider with the ultimate
goal of comparing these strategies from a worst and
an average case perspective, and we propose heuristics
with good worst and average case performances. We
will be concerned with the case of general demand
distribution.

Let 7., 7, be the optimal sequences for Strategies a
and b, respectively, of the PVRP and let r,, 7,5, be
the optimal tours for the PTSP and the TSP, respec-
tively. For Q = n and in the case of binary demand,
clearly v, = 74sp, 7 = 7,,.
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3.1. Relation Among the Different Strategies

We first concentrate on understanding the relation
among the expected lengths of the optimal solutions
for the PVRP under Strategies a and b, (E[L%],
E[L%:]), the expected length of the optimal tour for
the PTSP, (E[L, ]), the length of the optimal deter-
ministic tour (L;s»), and the expectation of the
re-optimization strategies, E[Ryrp], E[Rrsr].

Proposition 1. For the case of arbitrary demand and
under the triangle inequality

E[R ] < E[L]] < E[LY)]. (11)

Proof. Consider an a priori sequence 7. Then
L'G,,....0,)<L(,...,I,) because under Strategy
b we skip customers with zero demand and because
of the triangle inequality the length of the resulting
route is smaller. Note that the breakpoints in the
routes occur at the same nodes under both strategies.
As a result,

E[L!] < E[LY].

Consider now the optimal a priori sequence 7, under
Strategy a. The above inequality gives E[Lfa] <
E[L?]. But, because of the optimality of the sequence
, for Strategy b, E[L?] < E[L!], from which
the right inequality of (11) follows. Also, since
R(ii, ..., 0n) < L% (i), ..., i,) in every instance the
left inequality follows.

3.2. Lower Bounds

In this subsection, we derive lower bounds for the
different strategies. For convenience, we assume that
the distance matrix is symmetric.

Proposition 2. Under the triangle inequality

E[Rirp] = max[—é i d(0,r)E[D,], E[Rrsp]} , (12)
E[L!]= max(é ‘HZ, d(0,r)E[D,], Lrsp) , (13)

E[L!]= max(é 2 d(0, r)E[D,], E[LW]) ) (14)

Proof. Consider an instance S = S(iy, ..., i,) of the
problem that depends upon the demand pattern
iy, ..., Ip. Under the re-optimization strategy, a ve-
hicle starts from the depot, visits a subset X, of cus-
tomers (| X,| < @), returns to the depot, and then
continues to the next subset X,,,. Then, if L, is the
length of the route for visiting the subset X, of cus-
tomers in the optimal solution at instance S, then the
optimal length R(iy, ..., 1,) = /¢ " L,, where

I(i\, ..., i,) is the number of subtours in this partic-
ular instance. Clearly

L,=2d(0,r) forallreX,.

Multiplying by demand i, and summing over all nodes
in X, gives
L Y i,>2 Y d,r).

rek, rex;

Now since the capacity is never exceeded on any
subtour, we have ¥ ,e x b s 0, and so it follows that

L >2 Y d(0,r)i,.

reX,

Then from (1), we have

E[Ryre]lZ— 2 pi(i) .. palin)

l’l

(e, 1)

> X dO,r)

J=1 rex,

2 n

Q; d(0, r)E[D,],

which establishes the first inequality in (12). In
addition, since at every instance the length
RL'RP(il, ey ln) = LTSp(il, ey in), i.e., the lcngth of
the vehicle routing re-optimization strategy is larger
than the TSP re-optimization strategy, we have that

E[Ryrp] 2 E[Rysr)-

Moreover, from the triangle inequality, s(i, j) = 0
Therefore, from (9) E[L?] = L., = Lysp. Similarly,
E[L?] = E[L,] = E[L.], and hence, using (11) we
obtain (13) and (14).

In Proposition 2, if the distance matrix is asymmet-
ric, then we should replace the term

éz d(0, NE[D,]
with
—é S [d(0, 1) + d(r, O)ELD,].

3.3. Upper Bounds

In this subsection, we concentrate on finding upper
bounds for the two probabilistic Strategies a and b.
We first consider the case of identically distributed
demand and for convenience we assume that the
distance matrix is symmetric. We consider the cyclic
heuristic introduced in Haimovitch and Rinnooy Kan
(1985) in the context of the deterministic VRP.
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Cylic Heuristic

Step 1. Given an initial sequence r & r, = (0, 1, 2,
. 1, 0), consider the sequences
7=00,4...,n,1,...,i—1,0),i=2,...n
Step 2. Compute E[L;]]foralli=1,...,n

Step 3. The sequence with the minimum expected
length among E[L;], i = 1. ..., n is the proposed
solution 7, to the PVRP under Strategy a.

We now analyze the worst case behavior of the cyclic
heuristic under the assumption that each customer
has the same demand distribution.

Propesition 3. Ler D be the random variable describ-
g the demand of each customer. If the initial
sequence 1o the cyclic heuristic is the optimal traveling
salesman tour and 1, is the tour proposed by the cyclic
heuristic, then under the triangle inequality

1

+2(1+”Eg)]>27“d(°’”. (1s)

n

Proof. If the initial sequence to the cyclic heuristic is
the optimal deterministic tour, then let

n—1
LAY d(i i+ ) +d(n, 1),

=1

With this definition the lengths of the sequences +,
become:

L.,=L+d0,1)+d0,n)—d(1,n),
L.=L+d0,))+d0,i—-1)—d@i,i—1),i=2....n
As a result,

YL, =2Yd0 i)+ (n- 1L

=1 =1

Clearly,

1 n
E[LY] < E[L%,) <~ ¥ EIL]
=1
From (9) and the triangle inequality
E[LI) < L. +2 % (v, + 6,) d(0, j(i)),
=1

where (i) = (j + { — 2)mod(n) + 1. Therefore,

E[LY, [2L,,+ 2 +5)Zd(0 z)}
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since the probabilities v, + &, multiply every term
d(0, i)in ¥7_, E[L?]. Therefore,

] . 1 n )
E[LY,] < [2 Y d0, i)+ (n - DL
i=1

+ 2 i (v. +6) ﬁ: d(0, i)}. (16)

Our goal is then to find an upper bound for the term
21 (v, + 6,). We define the random variable:

N A the number of breakpoints in the route, where
the capacity is either exactly reached or exceeded. Let
also B, & the indicator random variable taking thc
value 1 if a breakpoint occurs at customer i and 0

otherwise. With these definitions, N = ¥'_, B,. But
since Pr{B, = 1} = v, + §,, then
E[N]= X E[B]= X (v, + ).
=1 17=1
If W & the total demand, then
w | W| nE[D]

E[N) = E||=|| < E| %| = ,

vl HQH [Q] 0
and hence,

" nE[D
S (v, + 6) < é I (17)
i=1

Using (17) in (16) and since L < L,gp, (15) follows.

In Proposition 3 we considered the case of identi-
cally distributed demand. In the next proposition we
consider the case in which customers’ demands are
not necessarily identical. Unfortunately, the upper
bounds are less tight.

Proposition 4. Let D, be the random variable that
describes the demand of customer i. Then under the
triangle inequality

E[L]] < E[L!] < E[L,]

+ 2 ,Z d(0, Hmin{E[D,], 1. (18)
E[L]] < E[L%sr] < Lysp

+2 ZI d(O, Hmin{E[D.D, 1}.  (19)

Proof. Consider the optimal tour for the PTSP 7, =
0, 1, ..., n, 0) as a solution to the PVRP under
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Strategy b. Then,

BIL5) < E[LL) = BUL,] + X 4Gy )

+Z Z VD) H (1 = p)s(s, j).

=1 j=1+1 r=r+1
Since s(i, j) = d(i, 0) + d(0, j) — d(i, j) < 2d(0, i)
from the triangle inequality we obtain
/ 1

S o =py=(-1 (-p)<L

=i+ r= :+I r=i+1

E[L]1<E[L,]+2 Y (v.+8)d0, 1)< E[L,)]
=1

+2 Y d, Hmin{E[D,], 1},
=1
since

v, + 0,

INoks

Pr{D, = riPr{W,., = IQ + Q — r for some /}

1

P

ZPr{D =rl<E[D],

where W, = Y!_, D, is the cumulative demand up
to customer {. Also since v, + 6, 1s a probability,
v, + 6, < 1. We prove (19) by considering the
optimum TSP tour as a feasible solution to the PVRP
under Strategy a and use the same bounding technique
as before.

We now find an upper bound for the vehicle routing
re-optimization strategy.

Proposition 5. Let D, be the random variable that
describes the demand of customer i. Then under the
triangle inequality

. < E 2
E[Rnpr]\E[Rmp]<1 Q)

n

+% > E[D,]14d(O, ). (20)

Proof. Consider an instance of the problem, in which
the demand pattern is 7, ..., i,. Let S be the set of
customers with nonzero demand. We use a result of
Altinkemer and Gavish (1985) that

RVRP(ll, ey ln)
2

4 & . .
= LTSP(S)(I - é) ajgl ljd(O,j).

By taking expectations the result follows immediately.

3.4. Heuristics for the PVRP

In this subsection, we exploit the bounds derived in
the previous section to propose some heuristics with
good worst case performance. In Section 3.3 we intro-
duced the cyclic heuristic. In the following theorem
we prove that the heuristic is within a constant factor
from the optimal sequence under Strategy a.

Theorem 3. Assume that the demands of the cus-
tomers are identically distributed. If the initial se-
quence given to the cyclic heuristic is the optimal TSP
tour and the sequence found by the cyclic heuristic is
T, then under the triangle inequality

E[LTH]
E[L”]\2+0<) @1)

Proof. From (13) and (15) we obtain

E[L:,]
E[L?)

_ Lase(1 = 1/n) + 2/n(1 + nE[D]/Q) ¥ d(0, 1)
max(2E[D]/Q ¥1-1d(0, i), Lrsp)

Q 1
[D]\2+0<;l'>.

Moreover, if Pr{D = 0} = 0, i.e., all customers have
some demand, then one can easily strengthen the
previous bound to E[L; J/E[Rvrr] < 2 + O(1/n),
which means that the cyclic heuristic is within a factor
of two of the re-optimization strategy. Theorem 3 says
that the cyclic heuristic produces a solution to the
PVRP under Strategy a, which, for large enough 7, is
within a factor of two of the optimal sequence. If,
instead of the optimal deterministic tour, we give the
Christofides tour to the cyclic heuristic, then the guar-
antee will be % + O(1/n), and the running time of
the combined heuristic (Christofides heuristic
and then the cyclic heuristic) is O(n?), since the
Christofides heuristic takes O(n®) and the cyclic heu-
ristic needs the evaluation of the expected length of »
sequences, each of which takes O(#n?). Therefore, this
combined heuristic runs in polynomial time and pro-
duces solutions which are within a constant factor of
the optimal sequence under Strategy a.

We now investigate the more general case of not
identically distributed demand.

I
<l +1+

Theorem 4. If the demand of customer i is distributed
according to the random variable D,, then under the
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triangle inequality

E[L"] E[L%s)
E[[.[,]h]<Q » E[I;fu] Q 1

where 1, is the optimal tour for the PTSP.

Proof. Combining Propositions 2 and 4 we obtain

E[L?) __ E[L,]+23r,d(0,)E[D]
E[L?]  max(2/Q X, d(0,)E[D)], E[L,)

sQ+ 1.

The bounds in the case of nonidentical demand
distributions are not particularly strong in the worst
case (although constant for constant Q). The reason
for this is that the upper bound from Proposition 4 is
not very sharp. Thus, we expect that they will be much
better in practice. Moreover, we have seen that the
bound produced by the cyclic heuristic applied to the
identical demand case is quite strong. It is tempting
to conjecture that the sequence produced by the cyclic
heuristic for the nonidentical demand case when ini-
tialized by the optimum TSP is within a constant
factor (independent of Q) of the optimal solution
under Strategy a as well. Indeed, our preliminary
computational experience suggests that this is the case.

4. ASYMPTOTIC BEHAVIOR FOR THE PVRP IN
THE RANDOM EUCLIDEAN MODEL

In this section, we investigate the asymptotic behavior
of the PVRP and of the re-optimization strategy under
the random Euclidean model. Let X, X5, ... be an
infinite sequence of independent, identically distrib-
uted random points in the unit square and assume
that the depot is at (0, 0). Let E[r] be the expected
distance from the origin and let X denote the first n
points of the sequence. Our goal is to find the asymp-
totic behavior of the expected length of the re-
optimization strategy E[Ryx-(X"™)], and the expected
length of the two a priori strategies

E[L{(X™)], E[L?,(X"™)].

Observe that these quantities are random variables
because the locations of the customers are random.

Let D be the random variable that describes the
demand of each customer. Let p = Pr{D > 0}. For the
PTSP the following results are known. Then with
probability 1 (Jaillet 1988):

. E RTSP X(”)
lim —L—é—)] = Brsr ¥, 22)
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E[L, (X")]

Iim

N0

= B(p) (23)

where 8,sp 1s the constant appearing in the celebrated
Beardwood, Halton and Hammersley (1959) theorem
and G(p) is a constant that only depends on p for
which

Brsr ¥p < B(p) < min[0.92 Vp, Brse].

The asymptotic behavior of the expected length of
the re-optimization strategy and the PVRP depends
critically on the dependence of the capacity Q on the
number of customers 7. This dependence is also crit-
ical for the asymptotic behavior of the VRP examined
in Haimovitch and Rinnooy Kan. Let O, denote the
capacity of the vehicle to indicate its dependence on
n. We prove the following theorem.

Theorem 5. The asymptotic behavior of the three
updating strategies is:

1. If Q is a constant, then almost surely

) (n) a ¢ yny
i ERveeX ™) _ . E[LL(X)]

n—o n—x

b (n
— jim ELEL X _ 2E[ED]

H—00 n Q (24)
2. Iflim, ... (Q,/vn) = 0, then almost surely
N i (n) b (n)
llm an[RlRP(X )] — llm QnE[Lr,,(X )]
n—son n n—oo n
~ b (n)
= lim —Qﬂ%—@—ﬂ = 2E[r)E[D). (25)
3. Iflim,_. Q,/vn = o, then almost surely
- E[Rygp(X™
’11112 ”‘[”‘“Uj% =4 I:s'P‘/[—?,
. E[LY (X"
,l,l_r.l;lc “—“’“[ \"/% )] = Byrsp,
b (nY
tim ZLEE0) ), (26)

Proof. Let 7 & 37, d(0, i)/n.

Case 1. Assume that Q is constant. Combining the
bounds from Propositions 2 and 5 we obtain

2E[D] ;< E[R; xp(X'")]

Q n
_ E[Rzsp(X™)] <1 _ l) | 2E[D]F
S — o)t o
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But Z[r] < o implies that 7 — E[r] almost surely by
the strong law of large numbers. Taking limits and
using (22) we obtain (24) for the re-optimization
strategy. We obtain (24) for the PVRP strategies in
a very similar manner using the bounds from
Propositions 1, 2, and 3.

Case 2. Similarly,

Q.

n

< QE[R1sp(X™)]
n

2E[D]F < = E[Ry rp(X™)]

+ 2E[D]F 27)

Since with probability I,
. O E [R»,SP_(X )

. O E[Rysp(X")]
lim =————= = lim
e n P v

(25) for the re-optimization strategy follows by taking
limits. Again, we obtain (25) for the PVRP strategies
in a very similar manner using the bounds from
Propositions 1, 2, and 3.

=0

Case 3. From Propositions 2 and 5

E[Rysp(X™)] _ E[Rrsp(X"™)]

va Vn
_ 2EID)7 4 ElRysr(X “N
T 0./Vn Vn '

From (22) and since lim,_.. (Q,/vn) = %, we obtain
(26) for the re-optimization strategy by taking limits.

With regard to Strategy a from Propositions 2 and
3 we obtain:

Lysp(X™) _ E[L7,(X'"™)]
Vn Vn

2E[D)F + 2F + L, sp(X')
Q./¥n ~ n Voo
Since lim,,_,.. L; gp(X(”))/\/r_z = (;sp almost surely and
lim, ... (Q,/vn) = %, we obtain (26) for Strategy a by
taking limits.

Finally, for Strategy b using Propositions 1, 4, and
6 we obtain:

E[L.(X")] < E[L",(X")] < E[L. (X")]

=

+2 X dO, i)y, + 8)
=1
< E[L, (X")] + 2d(0, ima) 3, (v: + )
=1

< E[L.(X")] + 2V2 %

n

Dividing with v, taking the limit as # — o and using
(23), we obtain (26) for Strategy b.

The case 0, = ©(+/n) is not covered in the previous
theorem. The reason is that in this case neither the
radial collection term, (2E[D]n#/(Q,), nor the local
collection term, E[Rzs»(X™)], dominate as was the
case in Theorem 5, where the radial collection term
dominated in Cases 1 and 2 and the local calculation
term dominated in Case 3.

Another interesting observation is that in both
Cases | and 2 the sequence produced by the cyclic
heuristic with initial tour any tour of length O(v/n) is
asymptotically optimal for Strategy a. Moreover, for
Strategy a the sequence produced by the cyclic heuris-
tic with initial sequence the optimal TSP is asymptot-
ically optimal in Case 3 as well.

In Case 3 the PTSP solves the PVRP under
Strategy b optimally. An even more interesting con-
sequence of Theorem 5 is that in Cases 1 and 2 both
the probabilistic Strategies a and b are asymptotically
equivalent to the re-optimization strategy. Further-
more, as we argued before, in these cases the tour
produced by the cyclic heuristic with initial sequence
any tour of length O( Vn ) is asymptotically equivalent
to the re-optimization strategy. In Case 3, Strategy b
is asymptotically within a constant factor from the
strategy of re-optimization. Indeed, we conjecture that
the constant factor is 1, i.e., Strategy b is asymptoti-
cally optimal. Moreover, in this case Strategy a is also
close to the re-optimization strategy if p is large.

Finally, we only considered the case where customer
locations are uniformly distributed in the unit square.
Similar asymptotic theorems can be proved in the
d-dimensional Euclidean space and, furthermore, for
the case where the distribution of customer locations
has a continuous part with density /. We chose dimen-
sion two in the exposition because the geometry is
clearer, and the uniform distribution for customer
locations, because it is more intuitive.

5. CONCLUDING REMARKS

In this paper, we propose a different approach to solve
vehicle routing problems when the demand is sto-
chastic. We give analytical evidence that this ap-
proach, which is based on finding an a priori sequence
among the entire set of customers, performs quite well
from a worst case perspective, especially if the distri-
bution of the demand of the customers is the same.
Although we propose worst case bounds for the case
of nonidentical demand distributions, our bounds
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were not tight. Finding tighter bounds is an interesting
open problem deserving further work.

We also attempt to give analytical evidence that the
a priori strategies we propose for the PVRP are very
close to the strategy of re-optimization, on average.
In particular, we show that if customer locations
are uniformly distributed in the unit square, both
Strategies a and b perform asymptotically very closely
to the strategy of re-optimization, which is a strong
indication of the usefulness of these strategies. Fur-
thermore, our analysis reveals some asymptotically
optimal heuristics for both Strategics a and b. It is a
fair conclusion to say that a priori and re-optimization
strategies perform comparably, on average.

From a practical standpoint, we believe that the
a priori strategies we are proposing provide a strong
alternative to the strategy of re-optimization, and
therefore they can be useful in practice, especially in
the absence of intense computational power. Related
to this point, an interesting question deserving further
research is to computationally compare the a priori
and re-optimization strategies.

As a final conclusion, we believe the paper demon-
strates that in the context of capacitated vehicle rout-
ing problems a priori strategies (PVRP) are a serious
and practical alternative to re-optimization strategies.
Our investigation in Bertsimas (1988) reached the
same conclusion for other combinatorial optimization
problems.
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